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We suggest a long-lived spin-polarization structure, a radial spin helix, and study its relaxation dynamics.
For this purpose, starting with a system of equations for spin-polarization density, we find its general solution
in the axially symmetric case. It is demonstrated that the radial spin helix of a certain period relaxes slower
than homogeneous spin polarization and plain spin helix. Importantly, the spin polarization at the center of the
radial spin helix stays almost unchanged at short times. At longer times, when the initial nonexponential
relaxation region ends, the relaxation of the radial spin helix occurs with the same time constant as that
describing the relaxation of the plain spin helix.

DOI: 10.1103/PhysRevB.82.125325 PACS number�s�: 72.15.Lh, 72.25.Dc

I. INTRODUCTION

At the present time, there is a significant interest in the
field of electron-spin relaxation in semiconductors stimulated
by possible future applications of spins in electronics and
computing.1,2 In many two-dimensional �2D� electron sys-
tems the leading mechanism of spin relaxation is the
D’yakonov-Perel’ spin-relaxation mechanism.3,4 Within this
mechanism, electron spins feel an effective momentum-
dependent magnetic field randomized by electron-scattering
events resulting in relaxation of electron-spin polarization. A
number of theoretical and experimental studies on peculiari-
ties of D’yakonov-Perel’ spin relaxation were reported in the
last decade.5–17

It was shown in Ref. 9 that the spin-relaxation time for 2D
electrons depends not only on material parameters �e.g.,
strength of spin-orbit �SO� interaction, electron mean-free
path, etc.� but also on the initial spin-polarization profile. In
particular, it was demonstrated that a plain spin helix in a 2D
electron system with Rashba spin-orbit interaction has a
longer spin-relaxation time than a homogeneous spin
polarization.9 A later study11 revealed that in a system with
both Rashba18 and Dresselhaus19 interactions such an in-
crease in spin-relaxation time can be even more dramatic.
This effect was also observed experimentally.14,20

In this paper, we consider spin relaxation of a radial spin
helix in a 2D electron system with Rashba SO interaction.
This structure is interesting because it provides the longest
spin-relaxation time of 2D electrons subjected to Rashba SO
interaction. Such a property is related to spin polarization in
the vicinity of the special point of radial spin helix r=0.
Physically, at short times, when the period of radial spin
helix is equal to the period of spin precession, an electron
diffusing from any direction to a point in the vicinity of r
=0 has the same direction of spin polarization as the initial
spin polarization at this point. Thus, D’yakonov-Perel’ spin
relaxation becomes inefficient at short times for spin polar-
ization in the vicinity of r=0.

In the radial spin helix, the initial distribution of spin
polarization has a cylindrical �axial� symmetry and is given
by

Sr�r,t = 0� = − S0 sin�kr� , �1�

S��r,t = 0� = 0, �2�

Sz�r,t = 0� = S0 cos�kr� , �3�

where k is the wave vector, and S0 is the initial amplitude of
spin polarization. In Fig. 1�a� we show schematically spin-
polarization distribution in the radial direction. The overall
distribution of z component of the spin polarization in radial
spin helix of finite radius is shown in Fig. 1�b�. Moreover, in
this paper we will often refer to a plain spin helix suggested
in Ref. 9. The initial distribution of spin-polarization compo-
nents in the plain spin helix is

Sx�x,t = 0� = − S0 sin�kx� , �4�

Sy�x,t = 0� = 0, �5�

Sz�x,t = 0� = S0 cos�kx� . �6�

This paper is organized as follows. In Sec. II, a drift-
diffusion equation approach is used to study relaxation dy-
namics of the radial spin helix. We obtain general expres-
sions for spin polarization as a function of time and study its
short and long time behavior. Our analytical studies are sup-
ported by Monte Carlo simulations presented in Sec. III. Our
main results and conclusions are summarized in Sec. IV.
Moreover, in several appendices following the main text, we
provide additional calculation details. Specifically, a general
analytical solution of spin drift-diffusion equation in the axi-
ally symmetric case is presented in the Appendix A and re-
laxation of plain spin helix is discussed in the Appendix B.

II. DRIFT-DIFFUSION DESCRIPTION OF
RADIAL SPIN HELIX

In this section we consider the relaxation dynamics of the
radial spin helix analytically. The initial spin polarization in
the radial spin helix is of cylindrical symmetry and described
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by Eqs. �1�–�3�. Intuitively, a special point in the radial spin
helix is r=0 because the electrons motion through this point
along straight trajectories in all directions should not lead to
spin relaxation at short times for a specific value of the wave
vector k. Correspondingly, the spin lifetime of electrons lo-
cated in a region within r=0 should be longer than the spin
lifetime of homogeneous spin polarization and of plain spin
helix. This effect is in the focus of our investigation.

Let us consider a two-dimensional electrons confined in a
quantum well or heterostructure with Rashba-type spin-orbit
interaction.18 The standard Hamiltonian with the Rashba
term is given by

Ĥ =
p̂2

2m
+ ���̂ � p̂� · z , �7�

where p̂= �p̂x , p̂y� is the 2D electron momentum operator, m
is the effective electron’s mass, �̂ is the Pauli-matrix vector,
� is the spin-orbit coupling constant and z is a unit vector
perpendicular to the confinement plane.

It is not difficult to show21 that in the case of Hamiltonian
�7� the quantum mechanical evolution of a spin of an elec-
tron with a momentum p can be reduced to a spin rotation
with the angular velocity �=2�p /� about the axis deter-
mined by the unit vector n=p�z / p. In this way, the spin-
orbit coupling constant � enters into equations through the
parameter �=2�m�−1, which gives the spin precession angle
per unit length.

Besides this evolution, 2D electrons experience different
bulk-scattering events such as, for example, due to phonons
or impurities. These scatterings randomize the electron tra-
jectories. Correspondingly, the direction of spin rotation be-
comes fluctuating what causes average spin relaxation
�dephasing�. This is the famous D’yakonov-Perel’ spin-
relaxation mechanism.3,4 The time scale of the bulk-
scattering events can then be characterized by a single rate
parameter, the momentum relaxation time �. It is connected
to the mean-free path by �=v�, where v= p /m is the mean

electron velocity. To take into account these scatterings we
use a model of diffusive spin transport, which in the limit of
small k�	1, yields the spin drift-diffusion Eqs. �A1�–�A3�.21

Let us consider dynamics of a radial spin helix relaxation.
We assume that such a structure is created at the initial mo-
ment of time with the spin-polarization components given by
Eqs. �1�–�3�. The exact solution of the radial spin drift-
diffusion Eqs. �A6� and �A7� with initial conditions �1�–�3�
and constants 
 and C from Eq. �A4� can be written as �see
Appendix A for more details�

Sr�r,t�
S0

= −
d

dk
�

0

k dsJ1�sr�
�k2 − s2 �k cosh���2 + 16s2�Dt

2
	

+ �k� + 4s2�
sinh���2 + 16s2�Dt

2
	

��2 + 16s2 
e−�s2+3�2/2�Dt,

�8�

Sz�r,t�
S0

=
d

dk
�

0

k dssJ0�sr�
�k2 − s2 �cosh���2 + 16s2�Dt

2
	

+ �4k − ��
sinh���2 + 16s2�Dt

2
	

��2 + 16s2 
e−�s2+3�2/2�Dt,

�9�

where J1�r� and J0�r� are the Bessel functions of the first and
zeroth order correspondingly and D is the diffusion constant.

Equations �8� and �9� define completely the radial spin
helix at any point r and at any moment of time t. The time
dependence of spin polarization at the center of helix is of
particular interest because the spin relaxation at this point is
the slowest. The radial component of spin polarization Sr in
the vicinity of r=0 is close to zero �it follows from symmetry
considerations or directly from Eq. �8��. Therefore, below,
we derive asymptotic expressions at short and long times for
Sz only. At short times D�2t	1, an expansion of the RHS of
Eq. �9� in t and its integration over s at r=0 results in

Sz�0,t�
S0

= 1 − 2�k − ��2Dt +
2

3
�k − ���2k3 − 6k2� + 6k�2

− 3�3�D2t2 + �−
8

15
k6 +

16

5
k5� − 8k4�2 +

104

9
k3�3

−
32

3
k2�4 +

14

3
k�5 −

4

3
�6	D3t3 + O�t4� . �10�

It follows from Eq. �10� that when the radial spin helix pe-
riod is equal to spin precession length �this happens when
k=�� the decay of Sz at the center of helix starts with a cubic
term in t
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FIG. 1. �Color online� �a� Schematic of initial spin-polarization
distribution in a radial spin helix. �b� Initial distribution of z com-
ponent of spin polarization �Sz�r ,0� /S0� in the radial spin helix of
finite radius used in our Monte Carlo simulations.
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Sz�0,t�
S0

= 1 −
10

9
�D�2t�3 + O�t4�, for k = �, D�2t 	 1.

�11�

This means that the spin relaxation at the center of the radial
spin helix at short times is significantly suppressed �for this
special wave number, k=�� and characterized by a rather
long initial interval of nonexponential behavior.

The asymptotic behavior of Sr and Sz at long times,
D�2t�1, can be determined by taking into account the
dominant contribution to the integrals in Eqs. �8� and �9�.
This contribution comes from the vicinity of a point s
� �0,k� corresponding to the maximum of the −�−�s� in the
integration interval �see Eq. �A15� and Fig. 5�. We should
consider three cases. In the first case, when 0kkm
=�15� /4, the main contribution to the integrals in Eqs. �8�
and �9� comes from the vicinity of point s=k at the right end
of the integration interval. In the second case, when k=km,
we should keep in mind that k=km is a stationary point of
�−�s� entering the exponent. Therefore, in this case, the
asymptotic behavior differs from the case kkm by a pre-
exponential factor. In the third case, when k�km, the main
contribution to the integrals in Eqs. �8� and �9� arises from
the vicinity of the inner stationary point s=km of �−�s�.

The asymptotic behavior of Laplace-type integrals is ob-
tained using standard for this purpose technics. From Eq. �9�
we get

Sz�r,t�
S0

= �1 +
4k − �

��2 + 16k2	J0�kr��−
�k

8

d�−�k�
dk

t

� e−�−�k�t, for 0  k 
�15

4
�, − k

d�−�k�
dk

t � 1,

�12�

Sz�r,t�
S0

=
�15��15 + 3�

32�2
��3

4
	J0�kmr��D�2t�1/4

� e−�−�km�t, for k = km =
�15

4
�, D�2t � 1,

�13�

Sz�r,t�
S0

= −
3

32

�4k + 5���
�k2 − km

2 �3/2 J0�kmr�� �

Dt
e−�−�km�t,

for k �
�15

4
�, �k − km�2 Dt � 1, D�2t � 1.

�14�

From Eq. �12� we see that if the wave vector k satisfies
the inequality 0kkm, then, at long times, the spin-
polarization decay is mainly exponential and characterized
by a relaxation time ��k�= ��−�k��−1. This relaxation time in-
creases with k. At the same time �accordingly to Eq. �10��,
the spin-polarization decay at short times also decreases with
k. Therefore, the spin life time of the radial spin helix in-
creases with increase in k� �0,km�.

At k=km, as it follows from Eqs. �13� and �14�, the relax-
ation time reaches its maximum value �m= ��−�km��−1

= �7D�2 /16�−1. Moreover since km�0.97� is very close to
�, the conditions for short time suppression of spin relax-
ation are almost optimal at this value of k. Therefore, when
k=km, the spin relaxation is significantly suppressed at both
short and long times.

When k�km, the asymptotic relaxation time is the same
as when k=km �see Eqs. �13� and �14��. However, even when
k is close to km, the ratio of the absolute value of RHS of Eq.
�14� to those of Eq. �13� is small �on the order of ��k
−km�2Dt�−3/4�. In addition, in the asymptotic formula �14�,
the pre-exponential factor changes its sign. Therefore, the
spin polarization Sz must turn to zero at some moment of
time, before it reaches the asymptotic behavior given by Eq.
�14�. Equation �10� at k���km also predicts a relaxation
increase with k when k�km.

Thus we conclude that the longest spin-relaxation time for
the spin polarization at the center of the radial spin helix
occurs at the wave vector

k = km = �15�/4 �15�

and is given by

�m = �7D�2/16�−1. �16�

In addition, at this value of k, the dynamics of spin polariza-
tion in the vicinity of r=0 is nonexponential at short times,
when the spin polarization remains almost constant. These
are the main results of our calculations.

The relaxation of initially homogeneous spin polarization
�when k=0� can be obtained from Eq. �9� in the limit k→0.
In this limiting case the factor before the exponential func-
tion e−�−�s�t in Eq. �9� turns to zero in k=0 limit. Therefore, at
k=0, the spin relaxation is determined by the exponential
function e−�+�0�t, where, accordingly to Eq. �A15�, �+�0�
=2D�2.

In fact, the exact time dependence of Sz at k=0 coincides
with its asymptotic behavior. It can be clearly seen from both
Eqs. �9� and �A3� that

Sz�t� = S0e−�+�0�t = S0e−2D�2t, for k = 0. �17�

Accordingly to Eq. �17�, the initially homogeneous spin po-
larization, directed along z axis, decays exponentially with a
time constant ��h�= �2D�2�−1. We also note that the applica-
bility limits of the long times asymptotic expressions listed
in Eqs. �12�–�14� do not allow calculations of Sz at k=0 or
k=km as a limiting case of Eq. �12�.

In Fig. 2 we show the time dependence of the spin-
polarization component Sz�r=0, t� calculated at several wave
vectors �k=0.5� �solid line 1�, k=km=�15� /4 �solid line 2�
and k=1.6� �solid line 3�� using Eq. �9�. The dashed lines 1,
2, and 3 represent asymptotic behavior at short times �given
by Eq. �10��, and dotted lines 1, 2, and 3 show asymptotic
behavior at long times �given by Eqs. �12�–�14�� for the same
values of the wave vectors k. These curves reveal main fea-
tures discussed above.
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Figure 3 depicts time dependence of Sz�r=0, t� for homo-
geneous spin polarization �calculated from Eq. �17��, plain
spin helix �calculated from Eq. �B4�� and radial spin helix.
This plot demonstrates that the spin polarization at r=0 in
the radial spin helix lives longer that those in the case of
homogeneous spin polarization and plain spin helix. It is
interesting and important that at short times this curve stays
almost flat as expected. At longer times, when the initial
nonexponential relaxation region ends, the relaxation of spin
polarization in the radial spin helix occurs with the same
time constant as those of the plain spin helix �it can be
shown analytically from Eqs. �B3� and �B4� that the longest
spin-relaxation time of the plain spin helix is given by Eq.
�16� and occurs at k=km given by Eq. �15��. Therefore, in
both cases, the increase in the exponential relaxation time
relative to the homogeneous spin polarization is equal to
32/7.

III. MONTE CARLO SIMULATIONS

In order to obtain an additional insight on spin relaxation
of the radial spin helix, we perform Monte Carlo simulations
employing an approach described in Refs. 5 and 22. This
Monte Carlo simulation method uses a semiclassical descrip-
tion of electron space motion and quantum-mechanical de-

scription of spin dynamics �the later is based on the Hamil-
tonian �7��. All specific details of the Monte Carlo
simulations program can be found in the references cited
above and will not be repeated here. To some extent, Monte
Carlo simulations program numerically solves Eqs.
�A1�–�A3�.

All numerical results related to the radial spin helix were
obtained using an ensemble of 108 electrons initially homo-
geneously distributed within a circle of a sufficiently large
radius R=200� to ensure that the influence of boundary ef-
fects on spin polarization in a region in the vicinity of r=0 is
negligible. The initial configuration of z component of spin
polarization of these electrons is presented in Fig. 1�b�. Our
Monte Carlo simulations results are in an excellent agree-
ment with the theory of radial spin helix relaxation presented
above.

Figure 4�a� demonstrates the spatial dependence of Sz in
the radial spin helix at t=100� and Fig. 4�b� depicts the
radial dependence of the spin-polarization components at the
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of r=0 in �b� demonstrate a longer spin lifetime of electrons located
in this region. This plot was obtained at ��=0.1 and the radial spin
helix period a=64.77� �this value of a corresponds to k=km�.
Mean-free path stands for �. Inset in �b�: spin polarization as a
function of time for different initial spin-polarization configura-
tions. This plot was obtained using the parameters values ��=0.1
and a=64.77� �the period of helices�. The straight lines are fitting
curves selected as exp�−�t− t0� / t1�. The parameters of the fitting
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=0�, t1=435� for plain spin helix, and t0=165�, t1=430� for radial
spin helix.
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same moment of time. In particular, it can be clearly seen
that the decay of Sz in the vicinity of r=0 is slower than in
other regions. The total spin polarization S shows oscillations
that are related to a well-known feature of D’yakonov-Perel’
relaxation: the spin-relaxation time of the perpendicular to
plane spin polarization is shorter than the spin-relaxation
time of the in-plane spin polarization. Similar oscillation of
spin-polarization amplitude were previously found in the re-
laxation dynamics of the plain spin helix.9

In addition to the radial spin helix relaxation, we simu-
lated the relaxation of homogeneous spin polarization and
relaxation of plain spin helix. Monte Carlo simulations re-
veal that at long times the time dependence of spin polariza-
tion in all spin configurations �homogeneous spin polariza-
tion, plain spin helix and radial spin helix� exhibits an
exponential decay.

In the inset of Fig. 4�b� we compare the time dependen-
cies of spin polarization �S�0, t� /S0� for three different initial
polarization configurations: the homogeneous spin polariza-
tion �initial spin polarization is selected as Sx=Sy =0, Sz=S0�,
plain spin helix and radial spin helix. The selected period of
radial and plane spin helices �k=km� corresponds to the long-
est spin lifetime of these structures at a fixed ��=0.1. It
follows from this plot that the spin polarization in the radial
spin helix is the most robust against the relaxation. We em-
phasize that the long-time behavior of all curves can be per-
fectly fitted by an exponential law given in the caption of
Fig. 4. The numerically obtained increase in the spin lifetime
of the radial spin helix 435 /103�4.2 is very close to the
theoretically predicted value 32 /7�4.6. We also note that a
slightly longer spin-relaxation time increase ��6� reported in
Ref. 9 for the plain spin helix can be related to a large value
of ��=0.3 that is beyond the linear spin drift-diffusion
theory.

IV. CONCLUSION

The dynamics of spin relaxation of radial spin helix was
investigated using spin drift-diffusion equations and Monte
Carlo simulations. Starting with spin drift-diffusion equa-
tions for electron-spin polarization in 2D semiconductor
structures with Rashba spin-orbit coupling, we derived the
general solution of these equations for the axial symmetric
case. Based on this solution, we studied the evolution of the
suggested long-lived spin structure—the radial spin helix. It
was shown that the relaxation of spin polarization in the
vicinity of r=0 in this structure demonstrates an unusual
long initial nonexponential relaxation behavior followed by
an exponential decay. The optimal value of the radial spin
helix wave vector was found and corresponding exponential
relaxation time was calculated. Qualitatively, the initial non-
exponential decay feature can be explained by existence of
an infinite set of dephasing-free trajectories propagating
through the point r=0.

In order to additionally check our analytical results, we
also performed Monte Carlo simulations of the dynamics of
radial spin helix relaxation using the same Monte Carlo
simulation technique as those described in Refs. 5 and 22.
Figure 4 shows a representative result of our simulation in

which it is clearly demonstrated that the polarization decay at
r=0 is slowest. Our analytical and Monte Carlo simulations
results are in a perfect agreement.

To conclude, the radial spin helix is a new structure ex-
hibiting an unusual spin-relaxation dynamics and relatively
long lifetime. Its property of slow relaxation dynamics at
short times is very interesting. Experimentally, the radial spin
helix can be created by spin injection from a point electrode
located at the center of a second ring-shape electrode or pos-
sibly by a modified spin gratings technique.23

APPENDIX A: ANALYTICAL SOLUTION OF
DRIFT-DIFFUSION EQUATIONS IN THE

AXIALLY SYMMETRIC CASE

Let us consider a two-dimensional nondegenerate electron
gas and use a semiclassical approach to model the electron
space motion and quantum-mechanical approach based on
the Hamiltonian �7� to describe the electron-spin dynamics.
Moreover, we assume the electrical neutrality and absence of
an external electromagnetic field. Within our approach, 2D
electrons are characterized by the momentum relaxation time
� and the mean-free path �, so that the average velocity of
electrons is v=� /�. From elementary gas-kinetic
considerations24 we can derive the system of drift-diffusion
equations for spin polarization21 S

�Sx

�t
= D�Sx + C

�Sz

�x
− 2
Sx, �A1�

�Sy

�t
= D�Sy + C

�Sz

�y
− 2
Sy , �A2�

�Sz

�t
= D�Sz − C� �Sx

�x
+

�Sy

�y
	 − 4
Sz, �A3�

where

C = 2�D, 
 =
1

2
�2D , �A4�

and

D =
�2

2�
. �A5�

Here D is the coefficient of diffusion, C describes spin rota-
tions, and 
 is the coefficient describing spin relaxation.

It is interesting to note that the same drift-diffusion Eqs.
�A1�–�A4� can be obtained for the model of 2D localized
electrons on a lattice25 in the hopping regime. However, in
this case, the diffusion coefficient is equal to D=�2 / �4��,
where � is the characteristic hopping time and � is the dis-
tance between lattice sites.

In the axially symmetric case �assuming that Sr=Sr�r , t�,
Sz=Sz�r , t�, and S�=0� Eqs. �A1�–�A3� can be written as

�Sr

�t
= D �

r � r
�r

�Sr

�r
	 −

Sr

r2� + C
�Sz

�r
− 2
Sr, �A6�
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�Sz

�t
= D

�

r � r
�r

�Sz

�r
	 − C

��rSr�
r � r

− 4
Sz. �A7�

Let us find a general solution of Eqs. �A6� and �A7� for
the case of an infinite plane. We search a specific solution of
the above equations in the form

Sr�r,t� = A�s,t�J1�sr� , �A8�

Sz�r,t� = B�s,t�J0�sr� , �A9�

where J1�r� and J0�r� are the Bessel functions of the first and
zeroth order correspondingly. Substituting expressions �A8�
and �A9� into Eqs. �A6� and �A7� we obtain a system of
ordinary differential equations for unknown functions A�s , t�
and B�s , t� of positive parameter s and time t

dA�s,t�
dt

= − �Ds2 + 2
�A�s,t� − CsB�s,t� , �A10�

dB�s,t�
dt

= − CsA�s,t� − �Ds2 + 4
�B�s,t� . �A11�

The general solution of this system can be presented as

A�s,t� = C+�s�sCe−�+�s�t + C−�s�sCe−�−�s�t, �A12�

B�s,t� = C+�s��
 + �
2 + C2s2�e−�+�s�t + C−�s�

��
 − �
2 + C2s2�e−�−�s�t, �A13�

where we denote

���s� = Ds2 + 3
 � �
2 + C2s2, �A14�

and C��s� are arbitrary functions of positive parameter s.
Using Eq. �A4�, Eq. �A14� can be rewritten in a more simple
form

���s� =
1

2
D�2s2 + 3�2 � ���2 + 16s2� . �A15�

The special solutions, Eqs. �A8� and �A9� �with A�s , t�
and B�s , t� given by Eqs. �A12�–�A14�� of the radial drift-
diffusion Eqs. �A6� and �A7� have the following simple
meaning. Accordingly to Eqs. �A8� and �A9�, the spatial de-
pendencies of the radial and z components of spin polariza-
tion are proportional to the first- and zeroth-order Bessel
function at any moment of time. The parameter s is similar to
the wave vector k for the plane case. The amplitudes A�s , t�
and B�s , t� determine the time dependence of the radial and z
components of spin polarization. If C+�s��0,C−�s�
=0�C+�s�=0,C−�s��0�, then these amplitudes are exponen-
tial functions of time with the inverse relaxation time �+�s�
��−�s�� as it can be seen from Eqs. �A12� and �A13�.

Whereas the inverse relaxation time �+�s� takes its mini-
mum value at s=0 and monotonically increases with param-
eter s, the inverse relaxation time �−�s� has a minimum at

sm =� C2

4D2 −

2

C2 . �A16�

At this value of s, �−�s� is equal to

�m = 3
 −
C2

4D
−


2D

C2 . �A17�

Using relation �A4�, we find that the minimum value of
�−�s� is equal to

�m =
7

16
D�2, �A18�

and it occurs at

sm =
�15

4
� . �A19�

Figure 5 shows ���s� given by Eq. �A15� as a function of s.
In order to obtain the general solution of Eqs. �A6� and

�A7�, we should integrate the special solutions �A8� and �A9�
over positive parameter s taking into account relations
�A12�–�A14�. Two arbitrary functions C��s� entering Eqs.
�A12�–�A14� can be found from specified initial conditions
for the radial and z components of polarization in the form of
its Fourier-Bessel transforms

S̃r�s� = �
0

+�

drrSr�r,0�J1�sr� , �A20�

S̃z�s� = �
0

+�

drrSz�r,0�J0�sr� . �A21�

As a result of algebraic transformations, we obtain the
solution of the initial value problem, Eqs. �A6� and �A7� in
the case of the infinite plane

Sr�r,t� = �
0

+�

dssGrr�r,t,s�S̃r�s� + �
0

+�

dssGrz�r,t,s�S̃z�s� ,

�A22�

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

λ(
s)

/D
η2

λ
+
(s)

λ
−
(s)

s/η

FIG. 5. �Color online� s dependence of inverse relaxation times
���s�. The minimum of �−�s� corresponds to the wave vector giv-
ing the longest relaxation time.
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Sz�r,t� = �
0

+�

dssGzr�r,t,s�S̃r�s� + �
0

+�

dssGzz�r,t,s�S̃z�s� ,

�A23�

where the Green’s functions Grr, Gzr, Grz, and Gzz are de-
fined as follows:

Grr�r,t,s� = J1�rs�cosh�t�
2 + C2s2�

+ 

sinh�t�
2 + C2s2�

�
2 + C2s2 �e−�Ds2+3
�t, �A24�

Grz�r,t,s� = − CJ1�rs�
sinh�t�
2 + C2s2�

�
2 + C2s2
se−�Ds2+3
�t,

�A25�

Gzr�r,t,s� = − CJ0�rs�
sinh�t�
2 + C2s2�

�
2 + C2s2
se−�Ds2+3
�t,

�A26�

Gzz�r,t,s� = J0�rs�cosh�t�
2 + C2s2�

− 

sinh�t�
2 + C2s2�

�
2 + C2s2 �e−�Ds2+3
�t. �A27�

Substituting the initial conditions for the radial spin helix,
Eqs. �1�–�3� into Eqs. �A20� and �A21� and performing inte-

gration we find that the generalized functions S̃r�s� and S̃z�s�,
which correspond to the initial conditions �1� and �3�, act as
follows:

�
0

+�

dssF�s�S̃r�s� = − S0
d

dk
�

0

k

ds
kF�s�

�k2 − s2
, �A28�

�
0

+�

dssF�s�S̃z�s� = S0
d

dk
�

0

k

ds
sF�s�

�k2 − s2
, �A29�

where F�s� is a smooth enough function.
Substituting Eqs. �A28� and �A29� into the general solu-

tions �A22� and �A23� and taking into account the expres-
sions for the Green’s functions, Eqs. �A24�–�A27�, we obtain
the explicit formulas for the solution of the drift-diffusion
Eqs. �A6� and �A7� for the initial conditions �1�–�3�

Sr�r,t� = − S0
d

dk
�

0

k dsJ1�sr�
�k2 − s2k cosh�t�
2 + C2s2�

+ �k
 + Cs2�
sinh�t�
2 + C2s2�

�
2 + C2s2 �e−�Ds2+3
�t,

�A30�

Sz�r,t� = S0
d

dk
�

0

k dssJ0�sr�
�k2 − s2 cosh�t�
2 + C2s2�

+ �kC − 
�
sinh�t�
2 + C2s2�

�
2 + C2s2 �e−�Ds2+3
�t.

�A31�

APPENDIX B: RELAXATION OF PLAIN SPIN HELIX

In the case of the plane spin helix defined by the initial
conditions �4�–�6�, the solution of the drift-diffusion Eqs.
�A1�–�A3� has the same harmonical spatial dependence at
any moment of time. Therefore, we can seek the solution of
this system of equations in the form

Sx�x,t� = A�k,t�sin�kx�, Sy�x,t� = 0, �B1�

Sz�x,t� = B�k,t�cos�kx� . �B2�

Substituting expressions �B1� and �B2� into the system,
Eqs. �A1�–�A3� we obtain the same system of ordinary dif-
ferential Eqs. �A10� and �A11� for the functions A�k , t� and
B�k , t� as in the axially symmetric case. Equations �B1� and
�B2� together with Eqs. �A12�–�A14� determine solutions of
the drift-diffusion Eqs. �A1�–�A3� with such a specific har-
monic spatial dependence. The arbitrary amplitudes C+ and
C− are calculated from the initial conditions �Eqs. �4�–�6��.
Finally, the solution of drift-diffusion Eqs. �A1�–�A3� for the
plane spin helix is given by

Sx�x,t� = − S0 sin�kx�cosh�t�
2 + C2k2�

+ �Ck + 
�
sinh�t�
2 + C2k2�

�
2 + C2k2 �e−�Dk2+3
�t,

�B3�

Sz�x,t� = S0 cos�kx�cosh�t�
2 + C2k2�

+ �Ck − 
�
sinh�t�
2 + C2k2�

�
2 + C2k2 �e−�Dk2+3
�t.

�B4�
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